
 An effective approach to learn Logical Joins

operator in relational theory and SQL: A Case study

Ashfaq Ahmed

 Department of Computer Science

 University of Management and Technology

 Lahore, Pakistan

ashfaq.ahmed024@gmail.com

Dr.Muhammad Shoaib Farooq

Department of Computer Science

 University of Management and Technology

Lahore, Pakistan

Shoaib.farooq@umt.edu.pk

Muhammad Ishaq Raza

Department of Computer Science

University of Management and Technology

Lahore, Pakistan

ishaq.raza@nu.edu.pk

Adnan Abid

 Department of Computer Science

 University of Management and Technology

 Lahore, Pakistan

Adnan.abid@umt.edu.pk

 Ali Raza

 Department of Computer Science

 University of Management and Technology

 Lahore, Pakistan

 aliirazii@gmail.com

Abstract— Teaching joins to beginners is a complex task .The

join is one of the most significant query operations of the relational

database. Joins help in accessing the data from one or more

relations based on Cartesian product. Join operators are used for

access the data from relations. Join operators are the most

important concept and skill for students taking a course in database

design and implementation specifically those majoring in

CS/IT/SE/EE/BBIT. All of the database textbooks partially cover

the topics of Joins and operators but the full set of join operators

are not fully exemplified. The concept of join is the most

challenging operation for students to implement efficient and

effective relational algebra expression. The join is an expensive

operation in term of I/O. A lot of research has been applied to the

optimization of join query operation. Usually, query execution takes

more time than query optimization. In the case of a highly

normalized relation, very large databases, the frequency of join

operation is very high. To perform join query more efficiently the

selection of join operators for an optimal result is very important.

With the best of our knowledge, no text or curriculum fully cover

the topics of join and there related operations, it creates a

deficiency in students to write efficient and effective queries, on

industry real life problems. Occasionally it is very tough for

readers, research scholars, students to learn and teach Join

operators. The aim of this research is the evaluation of join

operators for query optimization for teachers, learners to improve

their database concepts, implements the join operators in Relational

database, visualize join table’s diagrams with real life practical

examples, and define the best sequence of teaching. I also clarified

which types of join require ANSI Syntax and which could be

constructed with traditional syntax

Keywords— Cartesian product, ANSI, Join operators,

Relational algebra

I. INTRODUCTION

In relational database management system, join is one of the

most important query operation [1]. E.F. Codd at IBM in 1970

invented relational database which is a collective set of

multiple data sets organized based on relational model [18].

The software system, which is used to maintain relational

database, are known as relational database management

systems (RDBMS). Almost all relational database systems

used structured query language (SQL) for maintain and

querying the database. Therefore, a join is a query operation

that retrieves information from more than one table [2]. Join

operator is required when we need information which is not

retrieved in a single relation [2]. When we require to join more

than two tuples from two or more different relations then we

require join [1]. Tuples are combining when they fulfill the

join condition. The resulting tuples always become a new

relation [2], which might be made from more than one

relation. There is no available defined sequence of teaching

for these contents and sub contents in the course outlines

given by instructors and in computing curriculum. Due to this

issue, faculty defines its own variants and teaching sequence.

To avoid these uncertainties and ambiguities we propose a

mailto:ashfaq.ahmed024@gmail.com
mailto:ishaq.raza@nu.edu.pk

framework for the evaluation of join in relational database.

Our research will facilitate Teachers to improve their outline,

implements the join in Relational database, visualize join

table’s diagrams with practical examples, and define the best

sequence of teaching.

This paper presents each features using the following

ingredients:(i) define a type of join formally; (ii) discuss join

with SQL syntax according to ISO/ICE-2011 standers; (iii)

discuss join with relation algebra (iv)discuss join with

example case study (v) discuss DMBS support to joins. The

rest of this dissertation is organized as follows. Section 2 is

dedicated to Literature review, section 3 present logical joins

formally with SQL syntax according to ISO/ICE-2011

standers, and Section 4 presents the conclusion and future

direction.

II. LITERATURE REVIEW

Codd introduced the join operator in relational algebra [26].

Join is the most widely useful operator to retrieved data from

multiple relation. The joins were discovered in the 1980s and

implemented in the most of the relational database

management systems since then, and provide many

improvements [5] [6] [4].Mishra et al. [1] surveyed the

different types of joins and various implementation-joining

techniques. Gotlieb et al. [16] evaluate how one relational

operation of join could be computed efficiently. The

evaluation is based on computation time and storage usage.

Cao et al. [17] explains that self joins are cases of similar

relation with advantage to using both inputs. Bhanuprakash et

al. [3] introduce the concept of SQL joins in relational

algebraic notations with examples. The aim of this paper was

to learn the all fundamental types of joins with algebraic

notation.

Syrdal et al. [8] calculate the joins cost that intended to guess

the extent of the discontinuity of audible explains by the

combination of two particular unit. Swami [13] produce

optimize result for large join queries based on combinatorial

and heuristic technique. Yang et al. [9], compare the

performance of all types of join methods and provide an

opportunity for choosing the best one based on performance

and cost. Starner [11] used time interval in combination with

timestamp data type, implement SQL-92 and provide a stander

in which introduce a useful technique for addressing the

period of time. Define the difference between internal data

type and scalar data type, and conclude internal data type is

much better than the scalar data type because the internal data

type, which is central to the inner, join operation. Gold et al.

[7] proposed a partitioned SQL join that reduced inter-stock

reads.

Bernstein et al.[25], explains the concrete class of the

relational queries that are resolved using semi-join operator.

Further, described linear-time membership test. Xu bet.al [27]

introduces an efficient and easiest outer join algorithm known

as “outer-join Skew optimization (OJSO) so that the

scalability is improved and enhance the performance of outer

joins. Shinichi Morishita introduce a novel algorithm that

develop applications from CPF ordering of joins, use

applications consisting of joins, semi-joins and estimates for

calculating same relation join.[30]. Wang et al.[31] presented

a hierarchy of joins operation which are related to REA data

model, it then further explain the combination of different

modules related to REA model, the paper also presents

findings on join operation and their linked to AIS document

and report.

III. THE TAXONOMY OF LOGICAL JOIN OPERATOR

According to “ISO/IEC CD 9075-2:2013(E)” ANSI-Stander

SQL classify seven types of join operators cross join, inner

join (theta join, equi-join, natural join, named column join),

outer join (left, right, full) [32]. Some join operators like semi-

join (right, left), anti-join are no direct operator support in

relational algebra, we can get semi-join and anti-join by using

EXIST/IN/ALL functions in correlated sub queries [18]. As a

special case, self-

As a special case, self-join can be join a table to itself [36][35]

[34]. SQL describe joins in two distinct syntactical ways:

explicit and implicit notations or syntax. Implicit join syntax

abhorred in 1992, its uses is not a batter approach but some

DBMS still support it. We have made a taxonomy of join

operators to describe how join operators are related to each

other. In the following (figure 2) taxonomy scheme, possibly

cover all types of join in relational database.

Figure 1. Taxonomy of joins

IV. CASE STUDY

A part of university database schema which includes student

and society relation (table). University organize different

student societies in such a way that one student is batch

representative in each batch and each society is managed by a

student known as head_student. We are interested only the

head_student information in society table. Some students are

participating in societies individually. In this schema, roll_no

is the primary key of student table and batch_rep is foreign

key, society_id is the primary key and head_student is foreign

key in society table. The sample tables illustrate that batter

understanding of this relation.

Table 1: Student(R)

Table 2: Society(S)

Cross-join

Cross-join returns the cartesian product of tuples from

relations (table) in the join. Cartesian product produces all the

combination of tuples from two relations. A general form of

Cartesian product is (R×S) [22][15][33]. If a join query

process has no joining condition between two tables, Query

engine return their Cartesian product [15].

Table 3: Cross join syntax in relational algebra and SQL

RA

Result← R×S.

SQL

ISO/IEC-2013(E) syntax [32]

SELECT<column list>

FROM<left joined table>CROSS JOIN<right

joined table>

Alternate syntax[22]:

SELECT<column list>

FROM<left joined table>, <right joined table>

Table 4: Example of cross join in Relational Algebra and

SQL

RA

Result← Student× Society

SQL

SELECT *

FROM student CROSS JOIN society;

Alternate example:

SELECT *

FROM student, society;

Table 3 show the join syntax with relational algebra and SQL.

Table 4 shows the example query of our schema in relational

algebra expression and SQL .

Inner Join (⋈):

Joins that generate a result set that contain only tuples of

joining table that fulfil the joining condition are known as

inner joins [20]. Tuples that do not fulfil the join condition are

no included in the joined table or resultant table [20]. Inner

join is a widely useful join operator in applications but should

not be consider a good approach in all situations.

Table 5: Inner Join Syntax in Relational Algebra and SQL

RA

Result← R S.

SQL

ISO/IEC-2013(E) SQL syntax [32].

SELECT <column list>

FROM<Left Joined Table>[INNER] JOIN

<Right joined table> ON <join condition>

Alternate syntax[22]:

SELECT <column list>s

FROM<Left Joined Table>, <Right joined

table>

WHERE<join condition>

roll_no student_name cgpa batch_rep

101 Tahreem 3.3 103

102 Izaan 3.0 103

103 Isbah 3.4 Null

104 Ismail 2.5 105

105 Alia 2.7 Null

Society_id Society_ name Head_student

1 Softec 102

2 ACM Lahore

Chapter

104

3 Creative Null

4 Sports 102

Table 6: Inner Join example in Relational Algebra and

SQL

RA

Result← student Society.

SQL

SELECT *

FROM student INNER JOIN society

ON

student.roll_no=society.head_student;

Alternate Example:

SELECT *

FROM student, society

WHERE

student.roll_no=society.head_student;

Table 7: Result of Inner Join operation

Natural join (⋈):

Natural join introduce by E.F coded in relational algebra

[26].The natural join (⋈) is a binary operation that is

transcribed as R ⋈S where R and S both are relations

[20]. The natural join returns the result set of all combination

of rows in S and R relation that equivalent on their common

attribute names. Natural join is always an equi-join because it

has concealed (hidden) join condition-similar of common

named attributes [29]

Table 8: Natural Join syntax in Relational Algebra and

SQL

RA

Result ←R ⋈S

SQL

ANSI (ISO/IEC-2013(E)) syntax [32].

SELECT<column list>

FROM<right Joined Table>

NATRUAL <join type> JOIN <left joined

Table>

Table 9: Example of Natural Join in Relational Algebra

and SQL

RA

Result←

student⋈(Society)

SQL ANSI (ISO/IEC-2013(E)):

SELECT * FROM student

 NATURAL [INNER] JOIN society;

OR

SELECT * FROM student

 NATURAL [OUTER] JOIN society;

Note: Inner Keyword is optional

Table 10: Result of Natural Join Operator

Roll

_no

Student

_name

cgpa batch_rep Society

_id

Society

_name

102 Izaan 3.0 103 1 Softec

102 Izaan 3.0 103 4 Sports

104 Ismail 2.5 105 2 ACM

Lahore

Chapter

Named columns join

Name column join is a new (enhance) version of natural join

[31]. It is more flexible to natural join. It is mandatory to use

the name columns in the joins condition. Then, it is not as

dangerous [31]. Named column joins always are equi-joins

.The type of join can be one of the following: blank (no join

type define)-means inner join by default, outer is an optional

keyword in right [outer], left [outer], full [outer] [31].

Table 11 show the join syntax with relational algebra and

SQL. Table 12 shows the example query of our schema in

relational algebra expression and SQL. Table 13 shows the

result of Named columns join operation on our designed

schema.

Table 11: Named Column in Relational Algebra and SQL

RA

Result ←R ⋈S.

SQL ANSI (ISO/IEC-2013(E)) syntax [32]

SELECT* FROM R JOIN S

USING(column R, column S);

roll_no Student

_name

cgpa Batch

_rep

Society

_id

Society

_name

He

ad

_st

ud

ent

102 Izaan 3.0 103 1 Softec 10

2

102 Izaan 3.0 103 4 Sports 10

2

104 Ismail 2.5 105 2 ACM

Lahore

Chapter

10

4

Table 12: Example of Named Column join in Relational

Algebra and SQL

RA

Result←

student⋈(Society)

SQL

SELECT* FROM student JOIN society

USING(roll_no, head_student);

Table 13: Result of named Column join operator

roll

_no

student_

name

Cgpa batch

_rep

society

_id

Society

_name

102 Izaan 3.0 103 1 Softec

102 Izaan 3.0 103 4 Sports

104 Ismail 2.5 105 2 ACM

Lahore

Chapter

Theta join (θ):

Theta join is a more meaningful way of combining two

relations [37]. It Generate all the combination of tuples from R

and S that fulfill the joining condition, proper representation is

S.it is a binary operation which is

denoted by ⋈θ, Where ⋈is the join notation and the notation in

the subscript is the Greek latter theta. Theta join can be

represented by using a Cartesian product and a selection

expression while selection checks the joining condition is

fulfill [1]. It allows us to merge the Cartesian product and

selection into one operation. It produce the cartesian product

of two relation, and then performs the selection using the

predicate θ Error! Reference source not found..

R ⋈θ S = σθ (R × S)

There are some join conditions possible in a theta join i.e. (<,

>, =,>=, <=) matching tuples from different tables or relations.

Theta join has potentially (n*m) tuples in the resultant table,

but in some cases the cardinality of result is much lesser [37].

Table 14: Theta Join Syntax in Relational Algebra and

SQL

RA

Result← R S

SQL

ANSI (ISO/IEC-2013(E)) syntax [32]

SELECT*

FROM R JOIN S

ON <joining condition>

Table 15: Example of Theta Join operation in Relational

Algebra and SQL

RA

Result← (Student)

SQL SELECT *

FROM S

 JOIN Student BR

ON

 S.cgpa<BR.cgpa

Table 16: Result of Theta Join Operator

roll_no student_name Cgpa batch_rep

101 Tahreem 3.3 103

102 Izaan 3.0 103

104 Ismail 2.5 105

Equi-join (=)

Theta join has a sub type called Equi join. Equi join type is a

unique type of join that provides us with the combination of

rows from two relation such as R and S that meet joining

condition based on equality comparison [18]. The equijoin

operation is denoted by

 [13].

Table 17: Equi join syntax in Relational algebra and SQL

RA Result← R S

SQL

ANSI (ISO/IEC-2013(E)) syntax [32]

SELECT *FROM R JOIN S

ON

R.c1=S.c2

Roll

_no

Student

_name

Cgpa Bat

ch

_re

p

Society

_id

society

name

Head

_stud

ent

102 Izaan 3.0 103 2 Softec 102

102 Izaan 3.0 103 4 Sports 102

104 Ismail 2.5 105 4 ACM

Lahore

Chapter

104

Table 18: Example of Equi Join in Relational Algebra and

SQL

RA

SQL

SELECT * FROM student

JOIN society

ON

R.roll_no=S.batch_rep

Table 19: Result of Equi Join operator

Table 17 show the join syntax with relational algebra and

SQL. Table 18 shows the example query of our schema in

relational algebra expression and SQL .Table 19 shows the

result of Equi-join operation based on our designed schema.

Outer Join

The joins that generate a joined relation that include all tuples

from the outer table, nevertheless of whether or not the section

that generate matching tuples, are known as outer joins[20].

There are three types of outer joins: Left outer join, Right

outer join, and full outer join.

a) Left outer join (⟕)

This joining query mainly looking for matching records and

remaining records from left table [2] [12]. A left outer join

returns all the values from the left table and matched values

from the right table (NULL in the case of no matching join

predicate) [13]. Table 20 show the join syntax with relational

algebra and SQL. Table 201 shows the example query of our

schema in relational algebra expression and SQL .

Table 20: Syntax of Left Outer Join in Relational algebra

and SQL

RA

 S

SQL

ANSI (ISO/IEC-2013(E))syntax [32]:

SELECT <column list>

FROM<left joined Table>

[OUTER] JOIN <right joined table> ON <Join

condition>

Alternate syntax:

Alternate syntaxError! Reference source not

found.:oracle support this deprecated syntax

 SELECT *

FROM R, S

WHERE

R.column1=S.column1 (+);

IBM Informix supports this syntax Error!

Reference source not found.:

SELECT *

FROM R, [OUTER] S

WHERE

R.Column1=S.Column1;

Table 21: Example Left Outer Join in Relational algebra

and SQL

RA

Result← Student Society

SQL

ANSI (ISO/IEC-2013(E)) syntax [32].

SELECT *

FROM student

LEFT OUTER JOIN society

ON

student.roll_no=society.head_student;

Oracle supported syntax example:

SELECT *

FROM society, student

WHERE

 student.roll_no=society.head_student (+);

IBM Informix supported syntax example:

Select *

From student, OUTER society

WHERE

 student.roll_no=society.head_student;

Right outer join (⟖)

This joining query mainly looking for matching records and

remaining records from right table [2] [12]. A right outer join

returns all the values from the right table and matched values

from the left table (NULL in the case of no matching join

predicate) [13].The right outer join syntax in relational

algebra. Table 22 show the join syntax with relational algebra

and SQL. Table 23 shows the example query of our schema in

roll_

no

student_

name

Cgpa batch_

rep

society_

id

society

name

head_

student

102 Izaan 3.0 103 2 Softec 102

102 Izaan 3.0 103 4 Sports 102

104 Ismail 2.5 105 4 ACM

Lahore

Chapter

104

relational algebra expression and SQL. Table 24 shows the

result of right outer join operation based on our designed

schema.

Table 22: Right outer Join in Relational Algebra and SQL

RA

 S

SQL

ANSI (ISO/IEC-2013(E)) syntax [32].

SELECT *

FROM R RIGHT OUTER JOIN S

ON

 R.c1=S.c1;

Table 23: Example of Right Outer Join in Relational

Algebra and SQL

RA

Result← Student Society

SQL

SELECT *

FROM society, OUTER student

WHERE student.roll_no=society.head_student;

Table 24: Right outer Join Operation Result

Roll

_no

Student

_name

cgp

a

Batch

_rep

Society

_id

Society

_name

Head

_stud

ent

102 Izaan 3.0 103 1 Softec 102

102 Izaan 3.0 103 4 Support 102

Null Null Nul

l

Null 3 Creative Null

104 Ismail 2.5 105 2 ACM

Lahore

chapter

104

Full outer join (⟗)

This join query mainly looking for matching records and

remaining records from both table [2] [13]. Conceptually,

a full outer join combines the effect of applying both left and

right outer joins. Where records in the full outer joined tables

do not match, the result set will have null values for every

column of the table that lacks a matching row. For those

records that do match, a single row will be produced in the

result set (containing fields populated from both tables). Table

25 show the join syntax with relational algebra and SQL.

Table 26 shows the example query of our schema in relational

algebra expression and SQL. Table 27 shows the result of full

outer join operation on our designed schema.

Table 25: Full outer Join in Relational Algebra and SQL

RA

 S

 ANSI (ISO/IEC-2013(E))syntax [32]:

SELECT *

FROM <left joined table>

[FULL OUTER JOIN] <right joined table>

ON

<joined condition>

Alternate syntax[15]:

SELECT *

FROM <left joined table>, <right joined table>

WHERE

<joined condition>

Table 26: Example of Full outer Join in Relational Algebra

and SQL

RA

Result← Student

Society

SQL

ANSI (ISO/IEC-2013(E))syntax [32]:

SELECT *

FROM student FULL OUTER JOIN society

ON

student.roll_no=society.head_student;

Alternate syntax[15]:

SELECT *

FROM society, student

WHERE student.roll_no=society.head_student

(+);

Table 27: Result of Full outer Join in Relational Algebra

and SQL

Self-join (⋈)

The self-join is a type of inner join that join a single table to

itself, especially when table has a FOREIGN KEY, which is

reference to its own PRIMARY KEY. In this situation, we are

using the same table twice [2].

Table 28 show the join syntax with relational algebra and

SQL. Table 29 shows the example query of our schema in

relational algebra expression and SQL .

Table 28: Self Join in Relational Algebra and SQL

RA

Result← ((R)) ((BR))

SQL

ANSI (ISO/IEC-2013(E))syntax [32]:

Select *

 From <column list>R

R.column1=R.column2

Alternate syntax:

Select R1.c1, R2.c2, R3.c3, R2.c2

 From R As R1 JOIN R As R2

ON R1.c3= r2.c1

Note:c1 is PK and c3 is FK of relation R

Table 29: Example of Self Join Operator

Semi-join (⋉)

The semi-join is a relational algebra operation that choose a

set of rows in one relation that matches multiple rows of

another relation on the joining domains [25]. A semi-join

between two or more relation return rows the first relation

where multiple matches are found in second relation. The

difference between conventional join and semi-join is that

rows in the first relation will be returned at most once. Even if

the second relation contain multiple matches

For a row in the first relation, only one copy of the row will be

returned. Semi-joins are implemented using the EXISTS or

IN, ALL constructing in correlated sub queries in SQL [28].

Table 30: Left Semi Join in Relational Algebra and SQL

RA

Result← R ⋉S

SQL

ANSI (ISO/IEC-2013(E))syntax [32]:

SELECT * FROM R

WHERE EXISTS

(SELECT *FROM S WHERE R.c1=S.c2);

Table 31: Example of Left Semi Join in Relational Algebra

and SQL

RA

Result← Student ⋉Society.

SQL

SELECT * FROM student

WHERE EXISTS

(SELECT *FROM society WHERE

student.roll_no=society.head_student);

Roll

_no

Student

_name

cgpa Batch

_rep

Society

_id

Society

_name

Head

_stud

ent

101 Tahreem 3.3 103 Null Null Null

102 Izaan 3.0 103 1 Softec 102

102 Izaan 3.0 103 4 Sports 102

103 Isbah 3.4 Null Null Null Null

104 Ismail 2.5 105 2 ACM

Lahore

Chapter

104

105 Alia 2.7 Null Null Null Null

Null Null Null Null 3 Creative Null

RA

Result←((student))

((student))

SQL

SELECT S.roll_no, S.student_name,

S.batch_rep, Br.student_name As batch_rep_name

FROM student As S JOIN student As BR

ON

S.batch_rep=Br.roll_no

Table 32: Result of Left Semi Join operator in Relational

Algebra AND SQL

roll_no student_name Cgpa batch_rep

102 Izan 3.0 103

104 Ismail 2.5 105

Right Semi-Join (⋊)

The right semi join logical join operator returns tuples from

the right relation when there is a matching tuples in left

relation. When there is no join predicate found in the argument

column, every row is a matching row [23]. Table 33 show the

join syntax with relational algebra and SQL. Table 34 shows

the example query of our schema in relational algebra

expression and SQL .Table 34 shows the result of right semi-

join operation on our designed schema.

Table 33: Right semi join operator in Relational Algebra

and SQL

RA

Result← R ⋊ S

SQL ANSI (ISO/IEC-2013(E))syntax [32]:

SELECT * FROM S

WHERE EXISTS

 (SELECT * FROM R WHERE S.c1=R.c2);

Table 34: Example of Right Semi join in Relational

Algebra and SQL

RA

Result← student⋊ society

SQL

SELECT * FROM society

WHERE EXISTS

 (SELECT * FROM student WHERE

batch_rep=roll_no);

Table 35: Result of Right Semi Join Operator

society_id

society_name head_student

1 Softec 102

2 Acm Lahore

chapter

104

4 Sports 102

Anti-join (▷)

The anti-join return the non-matching rows from two relations.

An anti-join between two relation returns tuples from the first

relation where no matches are found in second relation [28].

Basically the anti-join is opposite of a semi-join, an anti-join

return one copy of each rows in the first relation which no

match is found while a semi-join return one copy of each rows

in the first relation which at least one match is found. Anti-

join is implemented using NOT IN or NOT EXISTS

constructs in correlated sub queries [28]. Table 36 show the

join syntax with relational algebra and SQL. Table 37 shows

the example query of our schema in relational algebra

expression and SQL .Table 38 shows the result of anti-join

operation on our designed schema.

Table 36: Anti Join operator in Relational algebra and

SQL

RA

Result← R ▷ S

SQL

ANSI (ISO/IEC-2013(E))syntax [32]:

SELECT * FROM R

WHERE NOT EXISTS

(SELECT *FROM S WHERE R.c1=S.c2);

Table 37: Example of Anti Join operator in Relational

Algebra and SQL

f

RA

Result← student ▷ Society

SQL SELECT * FROM student

WHERE NOT EXISTS

(SELECT *FROM society WHERE

student.roll_no=society.head_student);

Table 38: Result of Anti Join operator

Roll_No Student_Name Batch_Rep

101 Tahreem 103

103 Isbah Null

105 Alia Null

Table 39: Join Operator support to DBMS

The Table 39 show which logical join operator support with relational algebra and ISO/IEC-2013 standard with top DBMS.

Join

operators

Relational

algebra

Support(di

rect)

ISO/IEC-

2013(E)

Support

Oracle Microsoft

SQL

MySQL TeraData Postgr

eSQL

IBM

DB2

IBM

Informix

Cross join         

Inner join         

Left outer         

Right outer         

Full outer         

Theta join  ×       

Equi-join  ×       

Named

column

join

        

Natural

join

        

Self-join         

 Left semi-

join

× ×       

 Right

semi-join

× ×       

Anti-join × ×       

IV. CONCLUSION AND FUTURE WORK

In this paper, we have worked to minimize the complexities

that were faced by the learners of Database System in CS1

module. The complexity of joins is being reduced with the

help of details examples according to the taxonomy. This

taxonomy of the joins being presented will help Readers,

students and researchers in identifying join operators, which

are being discussed in a simple way.

ACKNOWLEDGMENT

I am very thankful to department of computer science at
University of Management and Technology for providing me
peaceful and ambient environment. I am also very thankful to
all the reviewers who took time out of their busy schedule for
reviewing this article.

REFERENCES

[1]Mishra, P., & Eich, M. H. (1992). Join processing in

relational databases. ACM Computing Surveys

(CSUR), 24(1), 63-113.

[2] Oracle® Database SQL Reference 10g Release 1

(10.1), Documentation.

https://docs.oracle.com/cd/B12037_01/server.101/b10

759/toc.htm .Accessed-05 November 2015.

[3]C.Bhanuprakash, Y.S.Nijagunarya, M.A.Jayaram,“A

Simple Approach to SQL Joins in a Relational

Algebraic Notation” International Journal of Computer

Applications (0975 – 8887) Volume 104 – No.4,

October 2014

[4]Understanding joins. Microsoft TechNet SQL Server.

https://technet.microsoft.com/en-

us/library/ms190014%28v=sql.105%29.aspx .

Accessed 05 November, 2015.

[5]D. DeWitt, D. J., Katz, R. H., Olken, F., Shapiro, L. D.,

Stonebraker, M. R., & Wood, D. A. (1984).

Implementation techniques for main memory database

systems (Vol. 14, No. 2, pp. 1-8). ACM.

[6]Kitsuregawa, M., Tanaka, H., & Moto-Oka, T. (1983).

Application of hash to data base machine and its

architecture. New Generation Computing, 1(1), 63-74.

[7]Mane gold, S., Boncz, P. A., & Kersten, M. L. (2000,

September). What happens during a join? Dissecting

CPU and memory optimization effects. In Proceedings

of the 26th international conference on very large data

bases (pp. 339-350). Morgan Kaufmann Publishers

Inc.

[8]Syrdal, A. K., & Conkie, A. (2005, September).

Perceptually-based data-driven join costs: comparing

join types. In INTERSPEECH (Vol. 5, pp. 2813-

2816).

[9] Yang, Y., & Singhal, M. (1997). A comprehensive

survey of join techniques in relational databases.

Computer and Information Science TR, 48.

[10]Swami, A. (1989, June). Optimization of large join

queries: combining heuristics and combinatorial

techniques. In ACM SIGMOD Record (Vol. 18, No. 2,

pp. 367-376). ACM.

[11]Starner, J. W. (2007). Joins on interval data type

columns in relational databases. Journal of Computing

Sciences in Colleges, 22(4), 235-241.

[12]Pratt, Phillip J (2005), A Guide to SQL, Seventh

Edition, Thomson Course Technology, ISBN 978-0-

619-21674-0

[13]Ramez Elmasri, Shamkant B. Navathe, Fundamentals

of Database Systems, Edition 6, Addison Wesley Pub

Co Inc, 2010, ISBN 0136086209, 9780136086208,

Page 145 – 164

[14]Ramez Elmasri, Shamkant B. Navathe, Fundamentals

of Database Systems, Edition 5, Addison Wesley Pub

Co Inc, 2010, ISBN 0136086209, 9780136086208,

Page 183 – 184

[15]http://www.oracle-dba-online.com. Accessed 17

December 2015

[16]Gotlieb, L. R. (1975, May). Computing joins of

relations. In Proceedings of the 1975 ACM SIGMOD

international conference on Management of data (pp.

55-63). ACM.

[17]Cao, Y., Zhou, Y., Chan, C. Y., & Tan, K. L. (2012,

March). On optimizing relational self-joins.

In Proceedings of the 15th International Conference on

Extending Database Technology (pp. 120-131). ACM.

[18] Codd, E.F. (1970). "A Relational Model of Data for

Large Shared Data Banks”. Communications of the

ACM 13 (6): 377–387. doi:10.1145/362384.362685.

[19]http://www.oratechinfo.co.uk.Accessed-25 Jan, 2016.

[20]http://infocenter.sybase.com. Accessed-25 Jan, 2016.

[21]http://dev.mysql.com. Accessed-25 Jan, 2016.

[22]http://www.sqlguides.com. Accessed-25 Jan, 2016.

[23]https://technet.microsoft.com. Accessed-27 Jan, 2016.

[24]http://allthingsoracle.com. Accessed-1 Feb, 2016.

[25]Bernstein, P. A., & Chiu, D. M. W. (1981). Using

semi-joins to solve relational queries. Journal of the

ACM (JACM), 28(1), 25-40.

[26]Codd, E. F. 1979. Extending the relational database

model to capture more meaning. ACM Transactions

on Database Systems 4, 4 (Dec.), 397{434.

[27]Xu, Y., & Kostamaa, P. (2009). Efficient outer join

data skew handling in parallel dbms. Proceedings of

the VLDB Endowment, 2(2), 1390-1396.

[28]Understanding Queries with Semi-Joins and Anti-

Joins.http://www.dbspecialists.com/files/presentations/

semijoins.html. Accessed-04 FEB, 2016.

[29]http://www.gplivna.eu .Accessed- 11 February 2016.

[30]Morishita, S. (1997). Avoiding Cartesian products for

multiple joins. Journal of the ACM (JACM), 44(1),

57-85.

[31]Wang, T. J., & Liu, P. (2011). A Taxonomy of the Join

Operations in The REA Data Model. Review of

Business Information Systems (RBIS), 8(1), 9-22.

[32]ISO/IEC CD 9075-2:2013(E)” Information technology

- Database languages - SQL - Part 2:

Foundation(SQL/Foundation) Ed 5”

[33]http://www.studytonight.com/. Accessed-04 march,

2016.

[34] ISO/IEC CD 9075-2:2013(E)” Information

technology - Database languages - SQL - Part 2:

Foundation(SQL/Foundation) Ed 5”

[35] http://allthingsoracle.com. Accessed-1 Feb, 2016.

[36] http://www.oratechinfo.co.uk.Accessed-25 Jan, 2016

[37] Boneset, D. (2013). On the impact of hardware on

relational join processing (Doctoral dissertation,

Master’s thesis, University of Magdeburg).

http://www.dbspecialists.com/files/presentations/semijoins.html
http://www.dbspecialists.com/files/presentations/semijoins.html
http://www.gplivna.eu/
http://www.studytonight.com/

